

Agenda

- Basic physics of weather
 - Common weather systems
 - Fronts
- How to read a weather map
- Make our own weather forecast!

What is the difference between weather and climate?

Climate Zones of the Continental United States

Why not just look at the weather app on my phone?

Extended Forecast for Newton Center MA

This Afternoon	Tonight	Sunday	Sunday Night	Monday	Monday Night	Tuesday	Tuesday Night	Wednesday
			40%→ 80%	80% > 40 %	•	*	A CONTRACTOR	*
Mostly Sunny	Mostly Cloudy	Cloudy	Chance Showers then Showers	Showers then Chance Showers	Mostly Cloudy	Sunny	Mostly Clear	Sunny
High: 46 °F	Low: 36 °F	High: 53 °F	Low: 47 °F	High: 55 °F	Low: 29 °F	High: 40 °F	Low: 27 °F	High: 43 °F

Sometimes the forecast models can be wrong!

What controls the daily weather?

- Temperature
- Wind direction / speed
- Precipitation

What controls the daily weather?

- Temperature
- Wind direction / speed
- Precipitation

Basic physics can explain most of these patterns!

Surface map for 11/21

What is atmospheric pressure?

What is atmospheric pressure?

Pressure exerted by the weight of air in the atmosphere

Depends on elevation (height above sea level) and temperature

Pressure and Temperature

- PV = nRT
- As temperature increases, so does pressure

High/Low pressure systems

High/Low pressure systems

Fronts

Cold front

Occluded front

Warm front

Stationary front

© 1997 Oklahoma Climatological Survey. All Rights Reserved.

Classic mid-latitude weather systems

Surface map for 11/21

Predicting the Weather

Surface observations

ECMWF Data Coverage (All obs DA) - Synop-Ship-Metar 13/Jan/2016; 00 UTC Total number of obs = 65150

Ocean Buoys: measure pressure

ECMWF Data Coverage (All obs DA) - Buoy 13/Jan/2016; 00 UTC Total number of obs = 7287

Weather balloons at airports: vertical measurements

ECMWF Data Coverage (All obs DA) - Temp 13/Jan/2016; 00 UTC Total number of obs = 664

Observations are inputted into weather forecast models

Forecasting the weather

Basic steps:

- 1. Look at current weather, satellites
- 2. Climatology what it the weather usually like at this time in past years?
- Look at weather models to see what math and physics think the weather will be like
 - a. what model biases exist in your area?
 - b. butterfly effect

Websites for forecasting

Current weather

- a. https://www.wrh.noaa.gov/mesowest/getobext.php
 ?wfo=sto&sid=KBOS&num=72 (3-day history)
- b. https://www.star.nesdis.noaa.gov/GOES/conus_b and.php?sat=G16&band=13&length=36 (satellite)
- c. https://radar.weather.gov/ (radar)
- d. https://www.wpc.ncep.noaa.gov/basicwx/basicwx
 ndfd.php (surface maps)

2. Climatology

- a. https://www.weather.gov/pqr/cliplot (current year compared to "normal")
- b. https://www.wunderground.com/history/daily/KBO
 S/date/2021-3-25 (observations from any previous day)

3. Climate models

- a. https://www.tropicaltidbits.com/analysis/models/(in map form)
- b. https://www.pivotalweather.com/model.php (in map form)
- C. https://meteor.geol.iastate.edu/~ckarsten/bufkit/i
 mage_loader.phtml? (time series)

4. National weather service

https://forecast.weather.gov/MapClick.php?x=184&y=1 21&site=box&zmx=&zmy=&map x=184&map y=121#.Y ZIMZ5HMJH4

Bonus pretty website! https://earth.nullschool.net/

